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Abstract

Introduction: Regional hypermetabolism in Alzheimer’s disease (AD), especially in the cerebellum, has been
consistently observed but often neglected as an artefact produced by the commonly used proportional scaling
procedure in the statistical parametric mapping. We hypothesize that the hypermetabolic regions are also impor-
tant in disease pathology in AD.
Methods: Using fluorodeoxyglucose (FDG)-positron emission tomography (PET) images from 88 AD subjects
and 88 age-sex matched normal controls (NL) from the publicly available Alzheimer’s Disease Neuroimaging
Initiative database, we developed a general linear model-based classifier that differentiated AD patients from
normal individuals (sensitivity = 87.50%, specificity = 82.95%). We constructed region–region group-wise corre-
lation matrices and evaluated differences in network organization by using the graph theory analysis between AD
and control subjects.
Results: We confirmed that hypermetabolism found in AD is not an artefact by replicating it using white matter
as the reference region. The role of the hypermetabolic regions has been further investigated by using the graph
theory. The differences in betweenness centrality (BC) between AD and NL network were correlated with region
weights of FDG PET-based AD classifier. In particular, the hypermetabolism in cerebellum was accompanied
with higher BC. The brain regions with higher BC in AD network showed a progressive increase in FDG uptake
over 2 years in prodromal AD patients (n = 39).
Discussion: This study suggests that hypermetabolism found in AD may play an important role in forming the
AD-related metabolic network. In particular, hypermetabolic cerebellar regions represent a good candidate for
further investigation in altered network organization in AD.

Keywords: Alzheimer’s disease; cerebellum; FDG; fluorodeoxyglucose; graph theory; hypermetabolism; PET;
positron emission tomography
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Cerebellar hypermetabolism is a commonly observed characteristic of Alzhiemer’s disease (AD) neurodegeneration in neu-
roimaging studies. However, whether cerebellar hypermetabolism is relevant to disease progression or whether it is an arte-
fact of proportional scaling is controversial. In this study, we developed a general linear model-based classifier for AD by
using the white matter mean for image scaling. We demonstrate that cerebellar hypermetabolism is a robust neuroimaging
feature of AD. Further, hypermetabolism in the cerebellum is associated with an increase in the betweenness centrality of this
region, indicating an important role of the cerebellum in changes in brain connectivity during AD.
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Introduction

Alzheimer’s disease (AD) is the most common form of
dementia affecting 5.8 million people in the United

States alone (Alzheimer’s Association, 2019). AD is a neuro-
degenerative disorder marked by an irreversible, progressive
decline in cognitive capabilities, leading to the deterioration
of memory and thinking skills (Dá Mesquita et al., 2016).
Fluorodeoxyglucose (FDG) positron emission tomography
(PET) has often been used to approximate synaptic activity
(Lin et al., 2008), and thus the decreased FDG uptake in
the key anatomical regions has been commonly accepted
as an imaging biomarker for AD and the mild cognitive im-
pairment (MCI) due to AD (i.e., prodromal AD [PAD];
McConathy and Sheline, 2015). A lot of effort has been
invested to standardize FDG PET readings, including the
machine learning approach that minimizes human errors
and subjective differences. Utilizing the Alzheimer’s Disease
Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu/
about; Toga and Crawford, 2015) database (i.e., a longitu-
dinal multicenter study involving combined efforts of mul-
tiple research centers across North America), several studies
have established quantitative biomarkers that may aid in AD
diagnosis (Chen et al., 2016; Partovi et al., 2017; Shaffer
et al., 2013; Yamane et al., 2014; Yao et al., 2010; Zhang and
Shen, 2012).

AD is typically characterized by hypometabolism (decline
in FDG uptake) in medial–frontal lobes, posterior cingulum,
and temporal lobes when compared with age–gender matched
normal controls (NL; McConathy and Sheline, 2015; Teune
et al., 2014). Hypermetabolism in AD has also been consis-
tently reported in some brain regions, including the cerebel-
lum, but it is often neglected in AD diagnosis (Borghammer
et al., 2009; Buchert et al., 2005). Some studies have sug-
gested that hypermetabolism is observed in neurodegen-
erative disorders on account of different signal intensity
normalization procedures (e.g., global mean normalization;
Borghammer et al., 2008, 2009). In addition, these hypermet-
abolic regions (e.g., cerebellum and pons) are not traditionally
perceived as key anatomical structures that are affected by
AD; although recent studies demand reconsideration of their
positions ( Jacobs et al., 2018; Miyazawa et al., 2010). It
has been suggested that the cerebellum has an integral con-
tribution to cognitive and neuropsychiatric deficits in AD
(Jacobs et al., 2018).

The graph theory is an analytic approach that investigates
the hierarchy of nodal structure within a network, for example,
identifying the hub of the information transfer (Khazaee et al.,
2015; van Diessen et al., 2014). Using the graph theory anal-
ysis on the brain metabolic network, we have revealed an im-
portant contribution of hypermetabolic anatomical structures,
including the cerebellum in the pathological network formu-
lation in Parkinson’s disease (Ko et al., 2018). To our knowl-
edge, this has not been explicitly investigated in AD. To
address this issue, we explored the topographical relationship
between the disease-related metabolic status (hypermetabo-
lism vs. hypometabolism) of different regions identified in
the FDG PET-based AD classifier (FAC) and their functional
hubness measured by betweenness centrality (BC).

In the current study, we investigated the role of hy-
permetabolic regions, such as the cerebellum in the AD
metabolic network. We validated the relevance of hyper-

metabolism observed in AD patients by using the mean
of white matter for intensity normalization (proportional
scaling). Using BC as a measure of hubness of the regions,
we investigated the significance of each region in the infor-
mation flow within the AD metabolic network (Brandes,
2001). We also examined the longitudinal metabolic
changes via FDG uptake in regions with increased hubness
in the AD metabolic network.

To validate whether our results are dependent on different
brain parcellation approaches, the analysis has been repeated
with two different parcellation schemes: automated anatom-
ical labeling (AAL, the most widely used brain parcellation
method; Lancaster et al., 2000) and 268-node functional
atlas generated via group-wise spectral clustering (an atlas
based on functional homogeneity within each subunit; Finn
et al., 2015; Shen et al., 2013).

Materials and Methods

Subjects

Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public–private partnership, led
by Principal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), PET, other biological markers,
and clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD. The
study was conducted after Institutional Review Board appro-
val at each site. Written informed consent was obtained from
study participants or authorized representatives.

The ADNI database comprised 1000 subjects, including
200 Alzheimer’s patients (AD), 200 NL subjects, and 600
MCI subjects. Based on the availability of FDG PET and
MRI scans at baseline, 116 AD patients were selected from
the ADNI cohort. All PET and MRI images were visually
inspected by V.G. Subjects were excluded if images did
not cover the entire cerebellum or showed any noticeable ab-
normalities. Twenty-eight AD subjects that had partial scans
of cerebellar regions were excluded. Hence, finally we se-
lected 88 AD patients by using this selection protocol for
AD network analysis and biomarker derivation (Fig. 1).
Out of the 154 NL subjects with available PET and MRI
scans, 127 remained NL after a follow-up of 3 years. Simi-
larly, 88 age–sex matched NL1 were selected from the 127
stable NL subjects for comparative network analysis. Demo-
graphic details of subjects included in the study from ADNI
cohort are mentioned in Table 1.

To investigate the metabolic changes happening before
AD diagnosis in the key anatomical regions, the longitudinal
study data of the MCI subjects included in the ADNI data-
base were analyzed. The MCI subjects were further divided
into two categories: stable MCI (sMCI), subjects who
remained MCI after a follow-up period of >3 years and
PAD, MCI subjects who developed Alzheimer’s later during
the follow-up period (Knopman et al., 2003; Petersen, 2009).
Of the 445 MCI subjects for which PET and MRI scans were
available, based on a follow-up period of at least 3 years, 186
remained sMCI and 54 converted to AD (PAD). Overall, 39
PAD subjects (n = 39) were selected for whose scans were
available at three time points (conversion year, 1 year before
conversion, and 2 years before conversion; Fig. 1). Of the
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186 overall sMCI subjects, 39 age–sex matched sMCI sub-
jects that had FGD PET and MRI scans available at three
consecutive points were selected. Similarly, of the 88 NL1,
39 NL2 were selected among whose PET and MRI images
are available at baseline and 2-year follow-up. It should be
noted that NL2 is a subgroup of NL1.

Image acquisition

The FDG PET and structural MRI images were retrieved
from the Laboratory of Neuroimaging database in a format
under which images had been preprocessed coregistration,
averaging, and standardization. The detailed procedure for
FDG PET images can be found at: http://adni.loni.usc.edu/
methods/pet-analysis-method/pet-analysis/#pet-pre-processing-
container. Similarly, the detailed procedure for structural MRI
images can be found at: http://adni.loni.usc.edu/methods/mri-
tool/mri-analysis.

Image preprocessing

FDG PET images were preprocessed by using standard
parameters using statistical parametric mapping 12

(SPM12) software. FDG PET images were coregistered
to structural MRI images by using rigid body transforma-
tion in SPM12. CAT12 was used to segment structural
MRI images and generate forward deformation fields
from MRI used in normalization. The coregistered FDG
PET images were normalized by warping to the standard
Montreal Neuroimaging Institute space using forward de-
formation fields. The normalized images were subse-
quently smoothed by using an 8 · 8 · 8 mm Gaussian
filter.

FDG PET-based AD classifier

The preprocessed FDG PET images were proportionally
scaled to the WM mean, which was the average FDG uptake
value within each individual’s white matter (WM) mask that
has been generated from the segmentation step. Linear re-
gression (Y = b · X + C; where X is the dummy variable
used for group classification, Y is the subject’s observed
image, b is the slope of the regression model, and C is the
constant) was performed for each voxel within the whole
brain mask. The whole brain mask was produced by

FIG. 1. Subject selection protocol. ADNI database comprised 1000 subjects, including 200 AD patients, 200 NL subjects,
and 600 MCI subjects. Based on availability of PET and MRI scans, 116 AD patients were selected. Twenty-eight AD pa-
tients were excluded after image quality assurance, such as the inclusion of whole cerebellum in PET scans. Finally, 88 AD
patients were selected for biomarker derivation and network analysis. Follow-up duration was neglected for AD, as dementia
was already present at the time of screening in the subjects. Out of the 154 NL subjects with available PET and MRI scans,
127 remained NL after a follow-up of 3 years. Eighty-eight age–sex matched NL subjects were selected from the 127 stable
NL subjects. Of the 445 MCI subjects for which PET and MRI scans were available, based on a follow-up period of at least
3 years, 186 remained stable MCI and 54 converted to AD (PAD). Thirty-nine PAD subjects had scans available at three time
points (conversion year, 1 year before conversion, and 2 years before conversion). For longitudinal FDG-SUR analysis, 39
age–sex matched stable MCI and NL subjects were selected that had scans available at three time points. AD, Alzheimer’s
disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; FDG, fluorodeoxyglucose; MCI, mild cognitive impairment;
MRI, magnetic resonance imaging; NL, normal controls; PAD, prodromal AD; PET, positron emission tomography; sMCI,
stable MCI; SUR, standard uptake ratios.
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combining the gray matter and white matter masks from each
subject’s segmented structural MRIs and used as an inclusive
mask, as previously described (Katako et al., 2018).

Using this regression model, the b map was constructed.
The dot product between the reconstructed image (i.e.,
FAC) and each individual’s proportionally scaled images
within the brain mask was defined as the subject score, and
it was used to differentiate AD versus NL1. To evaluate
the effect of overfitting and selection bias, we performed a
10-fold cross-validation on the AD versus NL1 dataset (Pol-
drack et al., 2020). Subject pools were divided into 10 bins,
and then 10 FACs were constructed by using 90% of the sub-
jects (training set). The resulting FACs were used to classify
the reserved testing set (10% of the subjects). This was re-
peated 10 times without overlapping testing sets (Katako
et al., 2018).

The AAL atlas was masked with the whole brain mask, as
described earlier. Pons were added to the original AAL
atlas, as described elsewhere (Ko et al., 2018). The mean
values of each of the 118 regions of interest were extracted
from the FDG PET images of all subjects, and then they
were proportionally scaled to the WM mean. Using the
same regression model used in voxel-based analysis,
slope coefficient b was calculated for all regions of interest
(ROIs). The b value for each ROI is referred to as that
ROI’s FAC region weight. We used a 10-fold cross-
validation as used in voxel-based analysis to test the predic-
tive accuracy of the ROI-based method. Based on their b
values (b > 0 or b < 0) and Bonferroni corrected p values
for the model [p < (0.05/number of ROIs)], regions are clas-
sified as hypermetabolic or hypometabolic, respectively.
Regions with p > 0.05/number of ROIs were classified as
non-significant (NS). To test the reproducibility and inter-
changeability of voxel-based versus ROI-based FAC, topo-
graphical similarity was evaluated by Pearson’s correlation.
For this, the mean of b values from each ROI was extracted
from the voxel-based b map.

AD network analysis using graph theory

The normalized metabolic activity with respect to WM
mean in all ROIs was used to generate a region · region cor-
relation matrix for the AD group and NL1 group separately
(Tatsuoka, 2016). The absolute r values were ranked, and un-
directed unweighted adjacency matrices were generated at
varying cost thresholds (1–50%; Hosseini et al., 2012). Mini-
mum network density is defined as the minimum cost at
which all nodes become fully connected in brain networks
of both groups and it was found to be at 16%. To compare
the overall network efficiency between AD and NL1, we
computed characteristic path length (L) and clustering coef-
ficient (C) at varying cost thresholds of 16–25% (Lovejoy
and Loch, 2003; Watts and Strogatz, 2011). L is a measure
of the average shortest path length between all pairs of
nodes in a network, and represents the efficiency of interac-
tion of different nodes in a network. C is the fraction of the
node’s neighbors that are, in turn, nearest neighbors of each
other and it represents the resiliency of the network. To test
for statistical significance of the group differences between
AD and NL1 groups in C and L, a non-parametric permuta-
tion test with 1000 iterations was used, as previously de-
scribed (Ko et al., 2018). The difference between AD and
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NL1 groups is deemed statistically significant if it lies out-
side 95% confidence interval of permutation distribution
(two-tailed; Bernhardt et al., 2011).

To compare the relative nodal importance within the con-
structed graphs of AD versus NL1, we computed BC as a
measure of hubness of each region in the network for the
cost threshold range 16–25% (Freeman, 1977). BC is the
fraction of all shortest paths in the network that contain a
given node, and it approximates the role of a region in infor-
mation transfer through the network. Nodes with high values
of BC participate in a large number of shortest paths, and
thus they play a significant role in information transfer acting
as ‘‘hubs’’ in the network.

The correlations between regional b from FAC and their
corresponding BC were evaluated by computing Pearson
product–moment correlation coefficient (Ko et al., 2018).
The regional BCs were averaged within 16–25% cost
range, and then they were z-scored within each group (AD
and NL1); then, the group difference was computed within
each region. The regional b values defined in FAC were
also z-scored, and the difference in z-scored b values was
computed between AD and NL1 groups.

Longitudinal changes in FDG standard uptake ratios

To examine the metabolic relevance of the regions identi-
fied as AD-related pathological hubs in BC measures, we in-
vestigated the longitudinal changes in FDG standard uptake
ratios (SUR) referenced to WM mean in PAD, sMCI, and
NL2 subjects who were repeatedly scanned over a period
of 2 years. To examine the comparative metabolic changes
in regions according to their hubness as observed in the
AD network, we divided regions into three groups based
on their BC: regions with significantly high hubness (normal-
ized difference in BC of ROI >2), regions with significantly
low hubness (normalized difference in BC of ROI <�2), and
regions with NS change in hubness (jnormalized difference
in BC of ROI j < 2). Similarly, based on their b values and
Bonferroni corrected p values for the analyses, regions
were classified as hypermetabolic, hypometabolic, and met-
abolically NS regions.

To examine the differences in FDG-SUR between regions
identified as hubs in AD progression as compared with non-
hub regions, we evaluated the interaction effect of ROI group
and time between different scans by using repeated-measures
analysis of variance in PAD, sMCI, and NL groups sepa-
rately. To examine the effects of using different brain parcel-
lation schemes on FAC and the graph theory network
measures, we repeated all analyses with a 268-node func-
tional atlas (Finn et al., 2015) by using the same procedure
as used with AAL-based analyses. The parcellation image
is publicly available on the BioImage Suite NITRC page
(https://www.nitrc.org/frs/?group_id=51).

Results

FDG PET-based AD classifier

Using a general linear model analysis on 88 AD patients
and 88 age–sex matched healthy controls, we derived
voxel-based and ROI-based FAC (Katako et al., 2018).
The b map is characterized by a decline in FDG uptake (or
hypometabolism) in medial–frontal lobes, posterior cingu-

lum, precuneus, inferior–parietal, and temporal lobes
(Fig. 2). It also shows increased FDG uptake (hypermetabo-
lism) in the cerebellum, paracentral lobule, and pons (Fig. 2).

The voxel-based FAC demonstrated excellent sensitivity
(87.50%) and specificity (82.95%) in the classification of
AD versus NL1 subjects. This was preserved in a 10-fold
cross-validation with high sensitivity (84.09%) and specific-
ity (80.95%), suggesting the minimal effects of overfitting.
The ROI-based FAC had almost identical metabolic topol-
ogy with high topographical similarity between two classifi-
ers (r = 0.9720, p = 8.92E-75). Slightly less performance was
achieved with ROI-based FAC (sensitivity of 71.59% and
specificity of 86.39%; 10-fold cross-validation sensitivity
of 79.55% and specificity of 77.27%).

AD metabolic network profile

Overall, the L in the AD metabolic network was lower
than the L in the NL1 metabolic network over the network
density range of 16–25% (Fig. 3A). The decrease in L was
statistically significant over the examined network density
range by 1000 permutations (Fig. 3C). This is indicative of
increased global efficiency in the AD network for informa-
tion transfer. On the contrary, C in the AD metabolic network
was not statistically different from the C in the NL1 meta-
bolic network over the network density range of 16–25%
(Fig. 3D).

Hubness correlates with abnormal
AD metabolic topography

We compared the association between the difference in
BC between AD and NL networks (deltaBC) and the FAC re-
gion weight for each anatomical parcellation (Fig. 4). The

FIG. 2. FAC. AD classifier FAC is characterized by the
hypometabolism (shown in blue) in medial–frontal lobes,
posterior cingulum, precuneus, inferior–parietal, and tempo-
ral lobes. Hypermetabolism (shown in red) is observed in the
cerebellum, paracentral lobule, and pons in AD. The voxel-
wise coefficient (voxel-weights of FAC) was z-scored to
the mean and standard deviation of the whole-brain. FAC,
FDG PET-based AD classifier.
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deltaBC and FAC weight for each ROI can be found in Sup-
plementary Table S1. Analysis revealed that the cerebellum,
paracentral lobule, mid-temporal pole, and lingual gyrus
showed significantly higher BC in the AD network than
the NL1 network. Conversely, the caudate, inferior occipital,
mid-occipital, and mid-temporal pole had significantly lower
BC in the AD network as compared with the NL1 network.
These group differences in BC were significantly correlated
with b (a measure of increased/decreased FDG uptake in
these regions) in FAC (r = 0.254, p < 0.005; Fig. 4). This sug-
gests that the hub regions (high BC) of the AD brain network
generally demanded more energy consumption whereas the
peripheral brain regions (low BC) in the AD brain network
were associated with decreased glucose metabolism.

The relationship between hubness and abnormal AD met-
abolic topography was replicated when a 268-node functional
atlas was used as an alternate parcellation scheme (r = 0.125,
p = 0.04; Supplementary Fig. S1). The functional atlas used
here is produced by using a group-wise graph theory-based
parcellation scheme for node definition in network analysis.
This suggests that this relationship is not sensitive to how
brain regions are defined in a brain parcellation atlas.

Longitudinal changes of FDG-SUR in hub
versus non-hub regions

We investigated the longitudinally measured changes in
FDG-SUR to compare metabolism in the regions with posi-
tive DBC (>2; regions that showed higher BC in AD vs.
NL1), regions with NS DBC (<2 and ‡2; regions that showed
similar BC in AD vs. NL1), and regions with negative DBC
(£2; regions that showed lower BC in AD vs. NL1) in NL2,
sMCI, and PAD. Significant main effects of time were ob-
served in all three groups (NL2, sMCI, and PAD;
p < 0.001). Significant interaction effects between time and
brain regions (divided by DBC) were observed only in
PAD (F[4,152] = 10.962, p = 7.764E-08; Fig. 5). In particu-
lar, the hub regions of the AD network with high DBC
showed increased metabolism over time ( p = 0.001, post
hoc Bonferroni). The metabolic changes in regions with neg-
ative DBC and NS DBC were not significant ( p > 0.147, post
hoc Bonferroni). No significant interaction effect was ob-
served between time and brain regions in NL2
(F[2,73] = 1.144, p = 0.324) or sMCI (F[4,152] = 0.706,
p = 0.589).

FIG. 3. Group differences in characteristic path length (L) and clustering coefficient (C) as a function of network density.
The changes in L (A) and C (B) of the AD and NL1 network over the network density range of 16–25%. Group differences in
L (C) and C (D) between AD and NL1 network over a network density range of 16–25%. The gray lines indicate a 95% con-
fidence interval defined by a permutation test with 1000 permutations. The + marker shows the difference between NL1 and
AD networks (i.e., NL1metric – ADmetric); the + marker falling outside the confidence interval shows network densities at
which between-group differences are significant. The positive values of + indicate NL1metric > ADmetric, whereas the negative
values of + indicate NL1metric < ADmetric.
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Discussion

Conventional practices of FDG PET reading for AD
diagnosis have focused on hypometabolism in key anatom-
ical regions (Katako et al., 2018; Teune et al., 2014). Hyper-
metabolism observed in AD is often dismissed as an
artefact arising due to use of global mean for normalization
in traditional studies (Borghammer et al., 2009). There is
increasing evidence from anatomical and neuroimaging
studies, which is leading to a paradigm shift in the role of
hypermetabolic regions in neurodegenerative diseases
(Miyazawa et al., 2010). Emerging evidence suggests that
the hypermetabolism observed in AD patients is an integral
part of AD pathophysiology (Apostolova et al., 2018).
Using WM mean for signal normalization under the as-
sumption that the overall activity in the WM is not signifi-
cantly altered in AD, we confirmed that hypermetabolism
observed in AD is not an artefact that is merely induced
by the global signal normalization.

In further graph theory analysis on the metabolic network,
we observed a statistically significant decrease in L in the
AD metabolic network when compared with NL1, whereas
the changes in C were not statistically significant between
the two groups. The phenomena of decreasing L and un-
changing C is a well-described characteristic in Watts–
Strogatz smallworld model (Watts and Strogatz, 2011),
where it was explained as such that a network becomes a
small world (and more cost-efficient) when there is more

‘‘randomness’’ in the re-wiring process. The random rewir-
ing of the connections in a network introduces shortcuts
among nodes, resulting in decreased L while maintaining
C, thus making AD whole-brain network ‘‘small-world
like’’ (Lovejoy and Loch, 2003; Saramäki et al., 2007).

A resting-state fMRI study of AD subjects found that
decreased path length is directly associated with lower
mini-mental state exam (MMSE) scores, suggesting that an
increase in the random topology of a graph is associated
with worse cognitive functioning (Tijms et al., 2013b).
Maintaining the balance of short path length and high clus-
tering in the AD network suggests an evolutionary optimiza-
tion of the equilibrium between information segregation
(represented by nodes forming particular clusters) and infor-
mation integration (represented by interactions among clus-
ters; Tijms et al., 2013a). The regional changes associated
with this increased ‘‘randomness’’ (N.B. it should be noted
that we are not implying that the brain network rewiring is
happening in a random fashion, but it refers to the opposite
of the regular network in Watts–Strogatz model) can be in-
vestigated by understanding which regions gained hubness
(the new important functional node).

The BC for each node quantifies the hubness of that node
by incorporating connectivity information from the whole
network (Arendt, 2009). Brain regions acting as hubs make
information processing in the network more efficient,
thereby increasing the robustness of the network toward
random failure (Albert et al., 2000). Cerebellar lobules,

FIG. 4. Correlation between FAC region weights and BC of regions. The region weights of regions on FAC are plotted
on x-axis, whereas the normalized difference in BC between AD and NL networks is plotted on y-axis. The regions are
delineated by using AAL. The regions shown by red circles are identified as hypermetabolic on the AD metabolic pattern,
whereas the ones shown in blue are identified as hypometabolic on FAC. The regions denoted by green circles are the ones
that do not undergo significant metabolic change in AD. A significant correlation (r = 0.254, p < 0.005), shown by a solid
black line, exists between region weights of regions on FAC and their corresponding BC values. BC, betweenness
centrality.
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paracentral lobule, and lingual gyrus were the key regions as-
sociated with increased hubness in the AD network as com-
pared with controls. The increased hubness may reflect the
adaptive role of these regions (via increased recruitment)
in AD patients to limit the clinical consequences of loss of
functionality in large-scale networks associated with high-
level cognition in AD patients.

Recent research on the functional topology of the cere-
bellum has implicated the cerebellum in the modulation
of many distributed networks, including cognitive, emo-
tional, and autonomic functions (reviewed in Schmahmann,
2019). Previous brain imaging studies have established the
integral role of the cerebellum in the modulation of cogni-
tion and emotion, suggesting its contribution to cognitive
and neuropsychiatric deficits in AD ( Jacobs et al., 2018).
The cerebellum is reported to be associated with cerebral
sensorimotor regions and higher-order cognitive regions
via feedback projections through thalamus (Schmahmann,
1998). These connections suggest cerebellar involvement
in cognitive processes, and the observation that these con-
nections retain their functional capacity in early stages of
AD may explain the increased hubness in cerebellar regions
in AD patients. Our results have supported the assertion
that cerebellar hypermetabolism in AD is not an artefact
resulting from the whole-brain mean proportional scaling
of FDG-PET images. In addition, we have shown that
many of these hypermetabolic cerebellar regions increase
in BC in AD. If feed-forward and feedback pathways of
the posterior cerebellum are relatively spared in AD-related
neurodegeneration, the observed increase in metabolism
and BC hubness could be interpreted as a compensatory
mechanism.

The paracentral lobule and lingual gyrus are associated
with sensorimotor and visual information integration, re-
spectively. The increased metabolism and hubness in
these regions are commonly identified in neurodegenerative
disorders, including AD (He et al., 2008). It has been
reported that the hyperactivity in the paracentral lobule is
associated with delusional thinking, which is present in
31% of AD patients (Nemoto et al., 2010; Stone et al.,
2015; Zhao et al., 2016). The lingual gyrus has been impli-
cated in anxiety and depression, which is present in 39–42%
of AD patients (Couvy-Duchesne et al., 2018; Zhao et al.,
2016). These neuropsychiatric symptoms may have wors-
ened during the PET center visits, which may explain the
observed increase in hubness of lingual gyrus in the AD net-
work when compared with NL.

We observed a significant decrease in the hubness of a few
hypometabolic regions in the AD network, which may be a
direct consequence of corticocortical dysconnectivity
(Stone et al., 2015). These regions (middle temporal, occipi-
totemporal, and caudate) have been well documented to be
affected in AD (Nemoto et al., 2010; Zhao et al., 2016).
The loss of local centrality in these regions has been found
to be strongly related with the cognitive decline in AD pa-
tients (Couvy-Duchesne et al., 2018). Thus, decreased BC
paired with decreased metabolism in the mid-temporal re-
gion, inferior occipital region, and caudate may be explained
by the loss of neuronal function and potentially accompanied
by atrophy (Yao et al., 2010).

It must be noted that the level of correlation between
changes in BC and glucose metabolism was very weak

FIG. 5. Longitudinal changes in FDG-SUR. The overall
averaged changes in FDG-SUR in the high DBC regions
(shown by dotted red line), NS DBC regions (shown by dot-
ted black line), and low DBC regions (shown by dotted blue
line). The high, NS, and low DBC regions were determined
based on BC differences between AD and NL1 shown in Fig-
ure 5 (DBC >2, �2 < DBC <2, DBC < �2, respectively). (A)
In the PAD subjects, there is a significant difference in aver-
aged FDG-SUR between three groups with a significant in-
teraction effect of ROI group and time (F[4,152] = 10.962,
p = 7.764E-08). The metabolism increases significantly in
‘‘hub’’ regions in PAD subjects near conversion to AD.
(B) In the sMCI subjects, there is no significant difference
in averaged FDG-SUR between three ROI groups
(F[4,152] = 0.706, p = 0.589). (C) In the NL2 subjects,
there is no significant interaction effect of ROI group and
time (F[2,73] = 1.144, p = 0.324). ROI, region of interest;
NS, non-significant.
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(r = 0.25), although it was statistically significant. The signif-
icance was primarily driven by a few hypermetabolic and
hypometabolic nodes paired with increased and decreased
BC, respectively, as described earlier. However, the majority
of the brain regions showed preserved BC level in AD com-
pared with NL1; whereas apparent metabolic changes have
been consistently observed (Tijms et al., 2013b). This may
be caused by relative insensitivity of BC measurement, the
statistical significance of which was conservatively tested
with 1000 permutations (Hosseini et al., 2012). It should be
also noted that the AD individuals that were included in the
ADNI project had very early stage AD (MMSE score ranges
from 20 to 26), and thus it may be possible that these regions
retained some level of functional connectivity despite decreas-
ing neuronal glucose metabolism (Convit et al., 2000).

To understand the functional relevance of the re-
gions with a significant increase in hubness (high DBC re-
gions) or significant decrease in hubness (negative DBC
regions) in AD development, the longitudinal metabolic
changes were compared in PAD, sMCI, and NL2. When di-
vided by DBC of AD versus NL1 networks, the regions with
high DBC (which included cerebellar lobules, left lingual gyri,
paracentral lobule) are the only regions that showed signifi-
cant metabolic changes (increased) over the 3 years of the
follow-up period in PAD, which was not observed in sMCI
or NL2. This suggests that the progressive regional metabolic
increases associated with increased hubness precede AD diag-
nosis at least by 1 year and that it may be involved with rapid
symptom worsening that can be observed 1 year before the
clinical diagnosis.

Conclusion

The present study suggests that hypermetabolism ob-
served in AD is not an artefact of using global mean in signal
normalization; instead, it suggests that hypermetabolism
might be an integral component of AD pathology, especially
in the early stage of the disease. There is rich, but under-
appreciated literature, documenting cerebellar hypermetabo-
lism in AD and the role of the cerebellum in AD pathology.
This study suggests that more research is needed to under-
stand the cause of hypermetabolism in AD and potentially in-
vestigate the role of the cerebellum in neuropathology and
disease progression in AD.

The disruption in large-scale structural and functional neu-
ronal networks in AD causes the network to become more
random, resulting in an evolutionary optimization of the bal-
ance of information segregation and information integration.
Within this framework, we propose that the cerebellum is
more than a silent bystander in the pathophysiology of AD.
We suggest a robust model where the loss of hubness in cor-
tical regions observed in AD patients is paralleled by an in-
crease in the hubness of cerebellar regions, with the possible
adaptive role to limit the clinical consequences of tissue
damage associated with AD.
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